Question:
Find the value
$2 x^{2}-\frac{5}{6} x+\frac{1}{12}$
Solution:
Splitting the middle term,
$=2 x^{2}-x^{2}-x^{3}+1 / 12$
$[\therefore-5 / 6=-1 / 2-1 / 3$ also $-1 / 2 \times-1 / 3=2 \times 1 / 12]$
$=x(2 x-1 / 2)-1 / 6(2 x-1 / 2)$
$=(2 x-1 / 2)(x-1 / 6)$
$\therefore 2 x^{2}-56 x+1 / 12=(2 x-1 / 2)(x-1 / 6)$