Find the value

Question:

The value of $\sqrt{5+2 \sqrt{6}}$ is

(a) $\sqrt{5}+\sqrt{6}$

(b) $\sqrt{5}-\sqrt{6}$

(c) $\sqrt{3}+\sqrt{2}$

(d) $\sqrt{3}-\sqrt{2}$

 

Solution:

$5+2 \sqrt{6}=2+3+2 \times \sqrt{3} \times \sqrt{2}$

$=(\sqrt{2})^{2}+(\sqrt{3})^{2}+2 \times \sqrt{3} \times \sqrt{2}$

This is in the form

$a^{2}+b^{2}+2 a b=(a+b)^{2}$

So, we have 

$(\sqrt{2})^{2}+(\sqrt{3})^{2}+2 \times \sqrt{3} \times \sqrt{2}=(\sqrt{2}+\sqrt{3})^{2}$

Thus, $\sqrt{5+2 \sqrt{6}}=\sqrt{(\sqrt{2}+\sqrt{3})^{2}}=\sqrt{2}+\sqrt{3}$

Hence, the correct answer is option (c).

Leave a comment