Question:
Find the value
$a^{2}+b^{2}+2(a b+b c+c a)$
Solution:
$=a^{2}+b^{2}+2 a b+2 b c+2 c a$
Using the identity $(p+q)^{2}=p^{2}+q^{2}+2 p q$
We get,
$=(a+b)^{2}+2 b c+2 c a$
$=(a+b)^{2}+2 c(b+a)$
Or $(a+b)^{2}+2 c(a+b)$
Taking (a + b) common
$=(a+b)(a+b+2 c)$
$\therefore a^{2}+b^{2}+2(a b+b c+c a)=(a+b)(a+b+2 c)$