Question:
Find the value
$x^{2}-y^{2}-4 x z+4 z^{2}$
Solution:
On rearranging the terms
$=x^{2}-4 x z+4 z^{2}-y^{2}$
$=(x)^{2}-2 \times x \times 2 z+(2 z)^{2}-y^{2}$
Using the identity $x^{2}-2 x y+y^{2}=(x-y)^{2}$
$=(x-2 z)^{2}-y^{2}$
Using the identity $p^{2}-q^{2}=(p+q)(p-q)$
$=(x-2 z+y)(x-2 z-y)$
$\therefore x^{2}-y^{2}-4 x z+4 z^{2}=(x-2 z+y)(x-2 z-y)$