Question:
Find the value
$\left[x^{2}+1 / x^{2}\right]-4[x+1 / x]+6$
Solution:
$=x^{2}+1 / x^{2}-4 x-4 / x+4+2$
$=x^{2}+1 / x^{2}+4+2-4 x-4 x$
$=\left(x^{2}\right)+(1 / x)^{2}+(-2)^{2}+2 \times x \times 1 / x+2 \times 1 / x \times(-2)+2(-2) x$
Using identity
$x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x=(x+y+z)^{2}$
We get,
$=[x+1 / x+(-2)]^{2}$
$=[x+1 / x-2]^{2}$
$=[x+1 / x-2][x+1 / x-2]$
$\therefore\left[x^{2}+1 / x^{2}\right]-4[x+1 / x]+6=[x+1 / x-2][x+1 / x-2]$