Find the value of $\lambda$ so that the points $(1,-5),(-4,5)$ and $(\lambda, 7)$ are collinear.
If the points $(1,-5),(-4,5)$ and $(\lambda, 7)$ are collinear, then
$\left|\begin{array}{ccc}1 & -5 & 1 \\ -4 & 5 & 1 \\ \lambda & 7 & 1\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{rcc}1 & -5 & 1 \\ -5 & 10 & 0 \\ \lambda & 7 & 1\end{array}\right|=0 \quad\left[\right.$ Applying $\left.R_{2} \rightarrow R_{2}-R_{1}\right]$
$\Rightarrow\left|\begin{array}{ccc}1 & -5 & 1 \\ -5 & 10 & 0 \\ \lambda-1 & 12 & 0\end{array}\right|=0 \quad\left[\right.$ Applying $\left.R_{3} \rightarrow R_{3}-R_{1}\right]$
$\Rightarrow \Delta=\left|\begin{array}{cc}-5 & 10 \\ \lambda-1 & 12\end{array}\right|=0$
$\Rightarrow-60-10(\lambda-1)=0$
$\Rightarrow-60-10 \lambda+10=0$
$\Rightarrow-10 \lambda=50$
$\Rightarrow \lambda=-5$