Find the value

Question:

Find the value

$x^{2}+6 \sqrt{2} x+10$

Solution:

Splitting the middle term,

$=x^{2}+5 \sqrt{2} x+\sqrt{2} x+10$

$[\therefore 6 \sqrt{2}=5 \sqrt{2}+\sqrt{2}$ and $5 \sqrt{2} \times \sqrt{2}=10]$

$=x(x+5 \sqrt{2})+\sqrt{2}(x+5 \sqrt{2})$

$=(x+5 \sqrt{2})(x+\sqrt{2})$

$\therefore x^{2}+6 \sqrt{2} x+10$

$=(x+5 \sqrt{2})(x+\sqrt{2})$

Leave a comment