Question:
Find the value
$8 x^{3} y^{3}+27 a^{3}$
Solution:
$=(2 x y)^{3}+(3 a)^{3}$
$=(2 x y+3 a)\left((2 x y)^{2}-2 x y \times 3 a+(3 a)^{2}\right)$
$\therefore\left[a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\right]$
$=(2 x y+3 a)\left(4 x^{2} y^{2}-6 x y a+9 a^{2}\right)$
$\therefore 8 x^{3} y^{3}+27 a^{3}=(2 x y+3 a)\left(4 x^{2} y^{2}-6 x y a+9 a^{2}\right)$