Question:
Show that $\lim _{x \rightarrow 0} e^{-1 / x}$ does not exist.
Solution:
Left Hand Limit(L.H.L.):
$\lim _{x \rightarrow 0^{-}} f(x)$
$=\lim _{x \rightarrow 0^{-}} e^{\frac{-1}{(-x)}}$
$=\lim _{x \rightarrow 0^{-}} e^{\frac{1}{x}}$
$=e^{\frac{1}{0}}$
$=e^{\infty}$
$\lim _{x \rightarrow 0^{+}} f(x)$
Right Hand Limit(R.H.L.):
$=\lim _{x \rightarrow 0^{+}} e^{\frac{-1}{x}}$
$=e^{\frac{-1}{0}}$
$=e^{-\infty}$
$=\frac{1}{e^{\infty}}$
[ Formula $\frac{1}{\infty}=0$, anything to the power infinity is also infinity. Thus $\frac{1}{e \infty}=\frac{1}{\infty}=0$ ]
$=0$
Since
$\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$
$\therefore \lim _{x \rightarrow 0} \mathrm{e}^{-1 / x}$ does not exist.