Find the value

Question:

Find the value

$2 a^{2}+2 \sqrt{6} a b+3 b^{2}$

 

Solution:

$=(\sqrt{2} a)^{2}+2 \times \sqrt{2} a \times \sqrt{3} b+(\sqrt{3} b)^{2}$

Using the identity $(p+q)^{2}=p^{2}+q^{2}+2 p q$

$=(\sqrt{2} a+\sqrt{3} b)^{2}$

$=(\sqrt{2} a+\sqrt{3} b)(\sqrt{2} a+\sqrt{3} b)$

$\therefore 2 a^{2}+2 \sqrt{6} a b+3 b^{2}$

$=(\sqrt{2} a+\sqrt{3} b)(\sqrt{2} a+\sqrt{3} b)$

 

Leave a comment