Question:
Find the value
$9(2 a-b)^{2}-4(2 a-b)-13$
Solution:
Let $2 a-b=x$
$=9 x^{2}-4 x-13$
Splitting the middle term,
$=9 x^{2}-13 x+9 x-13$
$=x(9 x-13)+1(9 x-13)$
$=(9 x-13)(x+1)$
Substituting x = 2a - b
= [9(2a − b) − 13](2a − b + 1)
= (18a − 9b − 13)(2a − b + 1)
$\therefore 9(2 a-b)^{2}-4(2 a-b)-13=(18 a-9 b-13)(2 a-b+1)$