Question:
Find the two numbers whose A.M. is 25 and GM is 20.
Solution:
Let A.M. and G.M. between the two numbers $a$ and $b$ be $A$ and $G$, respectively.
$A=25$
$\Rightarrow \frac{a+b}{2}=25$
$\Rightarrow a+b=50$ ...(i)
Also $G=20$
$\Rightarrow \sqrt{a b}=20$
$\Rightarrow a b=400$ ....(ii)
Now, putting the value of $a$ in $($ ii $)$ :
$\Rightarrow(50-b) b=400$
$\Rightarrow b^{2}-50 b+400=0$
$\Rightarrow b^{2}-10 b-40 b+400=0$
$\Rightarrow b(b-10)-40(b-10)=0$
$\Rightarrow(b-10)(b-40)=0$
$\Rightarrow \mathrm{b}=10,40$
If $b=10$, then, $a=400$.
And, if $b=40$, then $a=10 .$
Thus, the two numbers are 10 and $40 .$