Find the The Slopes of the tangent and the normal to the following curves at the indicated points:
$y=\sqrt{x}$ at $x=9$
Given:
$y=\sqrt{x}$ at $x=9$
First, we have to find $\frac{d y}{d x}$ of given function, $f(x)$,i.e, to find the derivative of $f(x)$
$\Rightarrow y=\sqrt{x}$
$\therefore \sqrt[n]{x}=x^{\frac{1}{n}}$
$\Rightarrow y=(x)^{\frac{1}{2}}$
$\therefore \frac{d y}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$
The Slope of the tangent is $\frac{d y}{d x}$
$\Rightarrow y=(x)^{\frac{1}{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}(x)^{\frac{1}{2}-1}$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}(x)^{\frac{-1}{2}}$
Since, $x=9$
$\left(\frac{d y}{d x}\right) x=9=\frac{1}{2}(9)^{\frac{-1}{2}}$
$\Rightarrow\left(\frac{d y}{d x}\right) x=9=\frac{1}{2} \times \frac{1}{(9)^{\frac{1}{2}}}$
$\Rightarrow\left(\frac{d y}{d x}\right) x=9=\frac{1}{2} \times \frac{1}{\sqrt{9}}$
$\Rightarrow\left(\frac{d y}{d x}\right) x=9=\frac{1}{2} \times \frac{1}{3}$
$\Rightarrow\left(\frac{d y}{d x}\right) x=9=\frac{1}{6}$
$\therefore$ The Slope of the tangent at $x=9$ is $\frac{1}{6}$
$\Rightarrow$ The Slope of the normal $=\frac{-1}{\text { The Slope of the tangent }}$
$\Rightarrow$ The Slope of the normal $=\frac{-1}{\left(\frac{d y}{d x}\right) \mathrm{x}=9}$
$\Rightarrow$ The Slope of the normal $=\frac{-1}{\frac{1}{6}}$
$\Rightarrow$ The Slope of the normal $=-6$