Find the term independent of x in the expansion of :
$\left(2 x+\frac{1}{3 x^{2}}\right)^{9}$
To Find : term independent of x, i.e. x0
For $\left(2 x+\frac{1}{3 x^{2}}\right)^{9}$
$a=2 x, b=\frac{1}{3 x^{2}}$ and $n=9$
We have a formula,
$\mathrm{t}_{\mathrm{r}+1}=\left(\begin{array}{l}\mathrm{n} \\ \mathrm{r}\end{array}\right) \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
$=\left(\begin{array}{l}9 \\ r\end{array}\right)(2 x)^{9-r}\left(\frac{1}{3 x^{2}}\right)^{r}$
$=\left(\begin{array}{l}9 \\ r\end{array}\right)(x)^{9-r}(2)^{9-r}\left(\frac{1}{3}\right)^{r}\left(\frac{1}{x^{2}}\right)^{r}$
$=\left(\begin{array}{l}9 \\ r\end{array}\right)(x)^{9-r} \frac{(2)^{9-r}}{(3)^{r}}(x)^{-2 r}$
$=\left(\begin{array}{l}9 \\ r\end{array}\right) \frac{(2)^{9-r}}{(3)^{r}}(x)^{9-r-2 r}$
$=\left(\begin{array}{l}9 \\ r\end{array}\right) \frac{(2)^{9-r}}{(3)^{r}}(x)^{9-3 r}$
Now, to get coefficient of term independent of $x$ that is coefficient of $x^{0}$ we must have,
$(x)^{9-3 r}=x^{0}$
- $9-3 r=0$
- $3 r=9$
- $r=3$
Therefore, coefficient of $x^{0}=\left(\begin{array}{l}9 \\ 3\end{array}\right) \frac{(2)^{9-3}}{(3)^{3}}$
$=\frac{9 \times 8 \times 7}{3 \times 2 \times 1} \frac{(2)^{6}}{(3)^{3}}$
$=\frac{1792}{3}$
Conclusion : coefficient of $x^{0}=\frac{1792}{3}$