Question:
Find the surface area of a sphere when its volume is changing at the same rate as its radius.
Solution:
Let $r$ be the radius and $V$ be the volume of the sphere at any time $t .$ Then,
$V=\frac{4}{3} \pi r^{3}$
$\Rightarrow \frac{d V}{d t}=4 \pi r^{2}\left(\frac{d r}{d t}\right)$
$\Rightarrow \frac{d V}{d t}=4 \pi r^{2}\left(\frac{d V}{d t}\right) \quad\left[\because \frac{d V}{d t}=\frac{d r}{d t}\right]$
$\Rightarrow 4 \pi r^{2}=1$
$\Rightarrow$ Surface area of sphere $=1$ square unit