Question:
Find the surface area of a cube whose volume is
(i) 343 m3
(ii) 216 dm3
Solution:
(i) Volume of the given cube $=343 \mathrm{~m}^{3}$
We know that volume of a cube $=(\text { side })^{3}$
$\Rightarrow(\text { side })^{3}=343$
i. e., side $=\sqrt[3]{343}=7 \mathrm{~m}$
$\therefore$ Surface area of the cube $=6 \times(\text { side })^{2}=6 \times(7)^{2}=294 \mathrm{~m}^{2}$
(ii) Volume of the given cube $=216 \mathrm{dm}^{3}$
We know that volume of a cube $=(\text { side })^{3}$
$\Rightarrow(\text { side })^{3}=216$
i. e., side $=\sqrt[3]{216}=6 \mathrm{dm}$
$\therefore$ Surface area of the cube $=6 \times(\text { side })^{2}=6 \times(6)^{2}=216 \mathrm{dm}^{2}$