Find the surface area of a cube whose edge is

Question:

Find the surface area of a cube whose edge is

(i) 1.2 m

(ii) 27 cm

(iii) 3 cm

(iv) 6 m

(v) 2.1 m

Solution:

(i) Edge of the a cube $=1.2 \mathrm{~m}$

$\therefore$ Surface area of the cube $=6 \times(\text { side })^{2}=6 \times(1.2)^{2}=6 \times 1.44=8.64 \mathrm{~m}^{2}$.

(ii) Edge of the a cube $=27 \mathrm{~cm}$

$\therefore$ Surface area of the cube $=6 \times(\text { side })^{2}=6 \times(27)^{2}=6 \times 729=4374 \mathrm{~cm}^{2}$

(iii) Edge of the a cube $=3 \mathrm{~cm}$

$\therefore$ Surface area of the cube $=6 \times(\text { side })^{2}=6 \times(3)^{2}=6 \times 9=54 \mathrm{~cm}^{2}$

(iv) Edge of the a cube $=6 \mathrm{~m}$

$\therefore$ Surface area of the cube $=6 \times(\text { side })^{2}=6 \times(6)^{2}=6 \times 36=216 \mathrm{~m}^{2}$

(v) Edge of the a cube $=2.1 \mathrm{~m}$

$\therefore$ Surface area of the cube $=6 \times(\text { side })^{2}=6 \times(2.1)^{2}=6 \times 4.41=26.46 \mathrm{~m}^{2}$

Leave a comment