Question.
Find the sums given below :
(i) $7+10 \frac{1}{2}+14+\ldots+84$
(ii) 34 + 32 + 30 + ... + 10
(iii) – 5 + (– 8) + (– 11) +...+ (– 230).
Find the sums given below :
(i) $7+10 \frac{1}{2}+14+\ldots+84$
(ii) 34 + 32 + 30 + ... + 10
(iii) – 5 + (– 8) + (– 11) +...+ (– 230).
Solution:
(i) $\mathrm{a}=7, \mathrm{~d}=10 \frac{1}{2}-7=3 \frac{1}{2}=\frac{7}{2}$
$\ell=t_{n}=84 \Rightarrow a+(n-1) d=84$
$\Rightarrow 7+(n-1) \times \frac{7}{2}=84$
$\Rightarrow(\mathrm{n}-1) \times \quad \frac{7}{2}=77$
$\Rightarrow \mathrm{n}-1=77 \times \frac{2}{7}=22$
$\Rightarrow \mathrm{n}=23$
The sum $=\frac{n}{2}\left\{a+t_{n}\right)=\frac{23}{2}\{7+84)$
$=\frac{23}{2} \times 91=\frac{2093}{2}=1046 \frac{1}{2}$
(ii) $34+32+30+\ldots \ldots .+10$
$a=34$
$d=a_{2}-a_{1}=32-34=-2$
$\ell=10$
Let 10 be the nth term of this A.P.
$\ell=a+(n-1) d$
$10=34+(\mathrm{n}-1)(-2)$
$-24=(n-1)(-2)$
$12=n-1$
$n=13$
$S_{n}=\frac{n}{2}(a+\ell)$
$=\frac{13}{2}(34+10)$
$=\frac{13 \times 44}{2}=13 \times 22=286$
(iii) $(-5)+(-8)+(-11)+\ldots \ldots \ldots+(-230)$
For this A.P.,
$a=-5$
$\ell=-230$
$d=a_{2}-a_{1}=(-8)-(-5)$
$=-8+5=-3$
Let $-230$ be the $n^{\text {th }}$ term of this A.P.
$\ell=a+(n-1) d$
$-230=-5+(n-1)(-3)$
$-225=(n-1)(-3)$
$(n-1)=75$
$n=76$
And, $S_{n}=\frac{n}{2}(a+\ell)$
$=\frac{76}{2}[(-5)+(-230)]$
$=38(-235)$
$=-8930$
(i) $\mathrm{a}=7, \mathrm{~d}=10 \frac{1}{2}-7=3 \frac{1}{2}=\frac{7}{2}$
$\ell=t_{n}=84 \Rightarrow a+(n-1) d=84$
$\Rightarrow 7+(n-1) \times \frac{7}{2}=84$
$\Rightarrow(\mathrm{n}-1) \times \quad \frac{7}{2}=77$
$\Rightarrow \mathrm{n}-1=77 \times \frac{2}{7}=22$
$\Rightarrow \mathrm{n}=23$
The sum $=\frac{n}{2}\left\{a+t_{n}\right)=\frac{23}{2}\{7+84)$
$=\frac{23}{2} \times 91=\frac{2093}{2}=1046 \frac{1}{2}$
(ii) $34+32+30+\ldots \ldots .+10$
$a=34$
$d=a_{2}-a_{1}=32-34=-2$
$\ell=10$
Let 10 be the nth term of this A.P.
$\ell=a+(n-1) d$
$10=34+(\mathrm{n}-1)(-2)$
$-24=(n-1)(-2)$
$12=n-1$
$n=13$
$S_{n}=\frac{n}{2}(a+\ell)$
$=\frac{13}{2}(34+10)$
$=\frac{13 \times 44}{2}=13 \times 22=286$
(iii) $(-5)+(-8)+(-11)+\ldots \ldots \ldots+(-230)$
For this A.P.,
$a=-5$
$\ell=-230$
$d=a_{2}-a_{1}=(-8)-(-5)$
$=-8+5=-3$
Let $-230$ be the $n^{\text {th }}$ term of this A.P.
$\ell=a+(n-1) d$
$-230=-5+(n-1)(-3)$
$-225=(n-1)(-3)$
$(n-1)=75$
$n=76$
And, $S_{n}=\frac{n}{2}(a+\ell)$
$=\frac{76}{2}[(-5)+(-230)]$
$=38(-235)$
$=-8930$