Find the sum to n term of the A.P. 5, 2, −1, −4, −7, ...,
In the given problem, we need to find the sum of the $n$ terms of the given A.P. ${ }^{*} 5,2,-1,-4,-7, \ldots$ ".
So, here we use the following formula for the sum of n terms of an A.P.,
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Where; a = first term for the given A.P.
d = common difference of the given A.P.
n = number of terms
For the given A.P. $(5,2,-1,-4,-7, \ldots)$,
Common difference of the A.P. $(d)=a_{2}-a_{1}$
$=2-5$
$=-3$
Number of terms (n) = n
First term for the given A.P. (a) = 5
So, using the formula we get,
$S_{n}=\frac{n}{2}[2(5)+(n-1)(-3)]$
$=\frac{n}{2}[10+(-3 n+3)]$
$=\frac{n}{2}[10-3 n+3]$
$=\frac{n}{2}[13-3 n]$
Therefore, the sum of first $n$ terms for the given A.P. is $\left.\frac{n}{2}[13-3 n]\right]$.