Find the sum of the series:
3 + 15 + 35 + 63 +...to n terms
In the given question we need to find the sum of the series.
For that, first, we need to find the $n^{\text {th }}$ term of the series so that we can use summation of the series with standard identities and get the required sum.
The series given is $3,15,35,63 \ldots$ to $n$ terms.
The series can be written as, $\left[2^{2}-1,4^{2}-1,6^{2}-1 \ldots(2 n)^{2}-1\right]$.
So, $\mathrm{n}^{\text {th }}$ term of the series,
$a_{n}=(2 n)^{2}-1$
$a_{n}=4 n^{2}-1$
Now, we need to find the sum of this series, $S_{n}$.
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{n}}$
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(4 \mathrm{n}^{2}-1\right)$
Note:
I. Sum of first n natural numbers, 1 + 2 +3+…n,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
II. Sum of squares of first $n$ natural numbers, $1^{2}+2^{2}+3^{2}+\ldots . n^{2}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
III. Sum of cubes of first $n$ natural numbers, $1^{3}+2^{3}+3^{3}+\ldots . n^{3}$,
$\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{3}=\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}$
IV. Sum of a constant k, N times,
$\sum_{\mathrm{k}=1}^{\mathrm{N}} \mathrm{k}=\mathrm{Nk}$
So, for the given series, we need to find,
$\mathrm{S}_{\mathrm{n}}=\sum_{\mathrm{n}=1}^{\mathrm{n}}\left(4 \mathrm{n}^{2}\right)-\sum_{\mathrm{n}=1}^{\mathrm{n}}(1)$
From, the above identities,
$\mathrm{S}_{\mathrm{n}}=4 \sum_{\mathrm{n}=1}^{\mathrm{n}}\left(\mathrm{n}^{2}\right)-\sum_{\mathrm{n}=1}^{\mathrm{n}}(1)$
$\mathrm{S}_{\mathrm{n}}=4\left(\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}\right)-(\mathrm{n})$
$=\left(\frac{n}{3}\right)[2(n+1)(2 n+1)-3]$
$S_{n}=\left(\frac{n}{3}\right)\left[4 n^{2}+6 n-1\right]$
So, Sum of the series, $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{3}\left[4 \mathrm{n}^{2}+6 \mathrm{n}-1\right]$