Find the sum of the following arithmetic progressions:
(i) 50, 46, 42, ... to 10 terms
(ii) 1, 3, 5, 7, ... to 12 terms
(iii) 3, 9/2, 6, 15/2, ... to 25 terms
(iv) 41, 36, 31, ... to 12 terms
(v) a + b, a − b, a − 3b, ... to 22 terms
(vi) $(x-y)^{2},\left(x^{2}+y^{2}\right),(x+y)^{2}, \ldots$, to $n$ terms
(vii) $\frac{x-y}{x+y} \frac{3 x-2 y}{x+y} \frac{5 x-3 y}{x+y}, \ldots$ to $\mathrm{n}$ terms
(viii) $-26,-24,-22, \ldots$ to 36 terms.
In the given problem, we need to find the sum of terms for different arithmetic progressions. So, here we use the following formula for the sum of n terms of an A.P.,
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Where; a = first term for the given A.P.
d = common difference of the given A.P.
n = number of terms
(i) To 10 terms
Common difference of the A.P. (d)
$=a_{2}-a_{1}$
$=46-50$
$=-4$
Number of terms (n) = 10
First term for the given A.P. (a) = 50
So, using the formula we get,
$S_{10}=\frac{10}{2}[2(50)+(10-1)(-4)]$'
$=(5)[100+(9)(-4)]$
$=(5)[100-36]$
$=(5)[64]$
$=320$
Therefore, the sum of first 10 terms for the given A.P. is.
(ii) $1,3,5,7, \ldots-26$ To 12 terms.
Common difference of the A.P. (d)
$=a_{2}-a_{1}$
$=3-1$
$=2$
Number of terms (n) = 12
First term for the given A.P. (a) = 1
So, using the formula we get,
$S_{n}=\frac{12}{2}[2(1)+(12-1)(2)]$
$=(6)[2+(11)(2)]$
$=(6)[2+22]$
$=(6)[24]$
$=144$
Therefore, the sum of first 12 terms for the given A.P. is.
(iii) $3,9 / 2,6,15 / 2, \ldots$ To 25 terms.
Common difference of the A.P. $(d)=a_{2}-a_{1}$
$=\frac{9}{2}-3$
$=\frac{9-6}{2}$
$=\frac{3}{2}$
Number of terms (n) = 25
First term for the given A.P. (a) = 3
So, using the formula we get,
$S_{25}=\frac{25}{2}\left[2(3)+(25-1)\left(\frac{3}{2}\right)\right]$
$=\left(\frac{25}{2}\right)\left[6+(24)\left(\frac{3}{2}\right)\right]$
$=\left(\frac{25}{2}\right)\left[6+\left(\frac{72}{2}\right)\right]$
$=\left(\frac{25}{2}\right)[6+36]$
$=\left(\frac{25}{2}\right)[42]$
$=(25)(21)$
$=525$
On further simplifying, we get,
$S_{25}=525$
Therefore, the sum of first 25 terms for the given A.P. is.
(iv) $41,36,31, \ldots$ To 12 terms.
Common difference of the A.P. (d) =
$=36-41$
$=-5$
Number of terms (n) = 12
First term for the given A.P. (a) = 41
So, using the formula we get,
$S_{12}=\frac{12}{2}[2(41)+(12-1)(-5)]$
$=(6)[82+(11)(-5)]$
$=(6)[82-55]$
$=(6)[27]$
$=162$
Therefore, the sum of first 12 terms for the given A.P. is 162 .
(v) $a+b, a-b, a-3 b, \ldots$ To 22 terms.
Common difference of the A.P. $(d)=a_{2}-a_{1}$
$=(a-b)-(a+b)$
$=a-b-a-b$
$=-2 b$
Number of terms (n) = 22
First term for the given A.P. (a) =
So, using the formula we get,
$S_{22}=\frac{22}{2}[2(a+b)+(22-1)(-2 b)]$
$=(11)[2 a+2 b+(21)(-2 b)]$
$=(11)[2 a+2 b-42 b]$
$=(11)[2 a-40 b]$
$=22 a-440 b$
Therefore, the sum of first 22 terms for the given A.P. is $22 a-440 b$.
(vi) $(x-y)^{2},\left(x^{2}+y^{2}\right),(x+y)^{2}, \ldots$ To $n$ terms.'
Common difference of the A.P. $(d)=a_{2}-a_{1}$
$=\left(x^{2}+y^{2}\right)-(x-y)^{2}$
$=x^{2}+y^{2}-\left(x^{2}+y^{2}-2 x y\right)$
$=x^{2}+y^{2}-x^{2}-y^{2}+2 x y$
$=2 x y$
Number of terms $(n)=n$
First term for the given A.P. $(a)=(x-y)^{2}$
So, using the formula we get,
$S_{n}=\frac{n}{2}\left[2(x-y)^{2}+(n-1) 2 x y\right]$
Now, taking 2 common from both the terms inside the bracket we get,
$=\left(\frac{n}{2}\right)\left[(2)(x-y)^{2}+(2)(n-1) x y\right]$
$=\left(\frac{n}{2}\right)(2)\left[(x-y)^{2}+(n-1) x y\right]$
$=(n)\left[(x-y)^{2}+(n-1) x y\right]$
Therefore, the sum of first $n$ terms for the given A.P. is $n\left[(x-y)^{2}+(n-1) x y\right]$
(vii) $\frac{x-y}{x+y}, \frac{3 x-2 y}{x+y}, \frac{5 x-3 y}{x+y}, \ldots$ To $n$ terms.
Number of terms (n) = n
First term for the given A.P. $(a)=\left(\frac{x-y}{x+y}\right)$
Common difference of the A.P. $(d)=a_{2}-a_{1}$
$=\left(\frac{3 x-2 y}{x+y}\right)-\left(\frac{x-y}{x+y}\right)$
$=\frac{(3 x-2 y)-(x-y)}{x+y}$
$=\frac{3 x-2 y-x+y}{x+y}$
$=\frac{2 x-y}{x+y}$
So, using the formula we get,
$S_{n}=\frac{n}{2}\left[2\left(\frac{x-y}{x+y}\right)+(n-1)\left(\frac{2 x-y}{x+y}\right)\right]$
$=\left(\frac{n}{2}\right)\left[\left(\frac{2 x-2 y}{x+y}\right)+\left(\frac{(n-1)(2 x-y)}{x+y}\right)\right]$
$=\left(\frac{n}{2}\right)\left[\left(\frac{2 x-2 y}{x+y}\right)+\left(\frac{n(2 x-y)-1(2 x-y)}{x+y}\right)\right]$
$=\left(\frac{n}{2}\right)\left[\left(\frac{2 x-2 y}{x+y}\right)+\left(\frac{n(2 x-y)-2 x+y}{x+y}\right)\right]$
Now, on further solving the above equation we get,
$=\left(\frac{n}{2}\right)\left(\frac{2 x-2 y+n(2 x-y)-2 x+y}{x+y}\right)$
$=\left(\frac{n}{2}\right)\left(\frac{n(2 x-y)-y}{x+y}\right)$
Therefore, the sum of first $n$ terms for the given A.P. is $\left(\frac{n}{2}\right)\left(\frac{n(2 x-y)-y}{x+y}\right)$.
(viii) $-26,-24,-22, \ldots$ To 36 terms.
Common difference of the A.P. $(d)=a_{2}-a_{1}$
$=(-24)-(-26)$
$=-24+26$
$=2$
Number of terms (n) = 36
First term for the given A.P. (a) = −26
So, using the formula we get,
$S_{36}=\frac{36}{2}[2(-26)+(36-1)(2)]$
$=(18)[-52+(35)(2)]$
$=(18)[-52+70]$
$=(18)[18]$
$=324$
Therefore, the sum of first 36 terms for the given A.P. is 324 .