Find the sum of n terms of the following series:
$\left(4-\frac{1}{n}\right)+\left(4-\frac{2}{n}\right)+\left(4-\frac{3}{n}\right)+\ldots$
Let the given series be $X=\left(4-\frac{1}{n}\right)+\left(4-\frac{2}{n}\right)+\left(4-\frac{3}{n}\right)+\ldots$
$=[4+4+4+\ldots]-\left[\frac{1}{n}+\frac{2}{n}+\frac{3}{n}+\ldots\right]$
$=4[1+1+1+\ldots]-\frac{1}{n}[1+2+3+\ldots]$
$=S_{1}-S_{2}$
$S_{1}=4[1+1+1+\ldots]$
$a=1, d=0$
$S_{1}=4 \times \frac{n}{2}[2 \times 1+(n-1) \times 0] \quad\left(S_{n}=\frac{n}{2}(2 a+(n-1) d)\right)$
$\Rightarrow S_{1}=4 n$
$S_{2}=\frac{1}{n}[1+2+3+\ldots]$
$a=1, d=2-1=1$
$S_{2}=\frac{1}{n} \times \frac{n}{2}[2 \times 1+(n-1) \times 1]$
$=\frac{1}{2}[2+n-1]$
$=\frac{1}{2}[1+n]$
Thus, $S=S_{1}-S_{2}=4 n-\frac{1}{2}[1+n]$
$S=\frac{8 n-1-n}{2}=\frac{7 n-1}{2}$
Hence, the sum of $n$ terms of the series is $\frac{7 n-1}{2}$.