Question:
Find the sum of $n$ term of the $A P \frac{x-y}{x+y}, \frac{3 x-2 y}{x+y}, \frac{5 x-3 y}{x+y}, \ldots .$
Solution:
To Find: The sum of n terms of the given AP.
Sum of n terms of an AP with first term a and common difference d is given by
$S=\frac{n}{2}[2 a+(n-1) d]$
Here $a=x-y, d=2 x-y$
$\Rightarrow S=\frac{1}{x+y} \times \frac{n}{2} \times[2 x-2 y+(n-1)(2 x-y)]$
$\Rightarrow S=\frac{n}{2(x+y)}[2 x-2 y+n(2 x-y)-2 x+y]$
$\Rightarrow S=\frac{n}{2(x+y)}[n(2 x-y)-y]$
The sum of the series is $\frac{\mathrm{n}}{2(\mathrm{x}+\mathrm{y})}[\mathrm{n}(2 \mathrm{x}-\mathrm{y})-\mathrm{y}]$