Question:
Find the sum of last ten terms of the AP 8, 10, 12,…, 126.
Solution:
For finding, the sum of last ten terms, we write the given AP in reverse order.
i.e., 126,124,122… 12,10,8
Here, first term (a) = 126, common difference, (d) = 124-126=-2
$\therefore \quad S_{10}=\frac{10}{2}[2 a+(10-1) d] \quad\left[\because S_{n}=\frac{n}{2}[2 a+(n-1) d]\right]$
$=5\{2(126)+9(-2)\}=5(252-18)$
$=5 \times 234=1170$