Question:
Find the sum of first n terms of an AP whose nth term is (5 − 6n). Hence, find the sum of its first 20 terms.
Solution:
Let an be the nth term of the AP.
∴ an = 5 − 6n
Putting n = 1, we get
First term, a = a1 = 5 − 6 × 1 = −1
Putting n = 2, we get
a2 = 5 − 6 × 2 = −7
Let d be the common difference of the AP.
$\therefore d=a_{2}-a_{1}=-7-(-1)=-7+1=-6$
Sum of first n terms of the AP, Sn
$=\frac{n}{2}[2 \times(-1)+(n-1) \times(-6)] \quad\left\{S_{n}=\frac{n}{2}[2 a+(n-1) d]\right\}$
$=\frac{n}{2}(-2-6 n+6)$
$=n(2-3 n)$
$=2 n-3 n^{2}$
Putting n = 20, we get
$S_{20}=2 \times 20-3 \times 20^{2}=40-1200=-1160$