Question:
Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively.
Solution:
Let a be the first term and d be the common difference of the AP. Then,
$d=a_{3}-a_{2}=18-14=4$
Now,
$a_{2}=14$ (Given)
$\Rightarrow a+d=14 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow a+4=14$
$\Rightarrow a=14-4=10$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we get
$S_{51}=\frac{51}{2}[2 \times 10+(51-1) \times 4]$
$=\frac{51}{2}(20+200)$
$=\frac{51}{2} \times 220$
$=5610$
Hence, the required sum is 5610.