Question.
Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively
Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively
Solution:
$\mathrm{t}_{2}=14, \mathrm{t}_{3}=18$
$\mathrm{d}=\mathrm{t}_{3}-\mathrm{t}_{2}=18-14=4$, i.e., $\mathrm{d}=4$
Now $\quad \mathrm{t}_{2}=14 \quad \Rightarrow \mathrm{a}+\mathrm{d}=14$
$\Rightarrow a+4=14 \quad \Rightarrow a=10$
$\mathrm{S}_{51}=\frac{51}{2}\{2 \mathrm{a}+50 \mathrm{~d}\}=\frac{51}{2}\{2 \times 10+50 \times 4\}$
$=\frac{51}{2} \times 220=51 \times 110=5610$
$\mathrm{t}_{2}=14, \mathrm{t}_{3}=18$
$\mathrm{d}=\mathrm{t}_{3}-\mathrm{t}_{2}=18-14=4$, i.e., $\mathrm{d}=4$
Now $\quad \mathrm{t}_{2}=14 \quad \Rightarrow \mathrm{a}+\mathrm{d}=14$
$\Rightarrow a+4=14 \quad \Rightarrow a=10$
$\mathrm{S}_{51}=\frac{51}{2}\{2 \mathrm{a}+50 \mathrm{~d}\}=\frac{51}{2}\{2 \times 10+50 \times 4\}$
$=\frac{51}{2} \times 220=51 \times 110=5610$