Find the sum of each of the following arithmetic series:
(i) $7+10 \frac{1}{2}+14+\ldots+84$.
(ii) $34+32+30+\ldots+10$.
(iii) $(-5)+(-8)+(-11)+\ldots+(-230)$
(iv) $5+(-41)+9+(-39)+13+(-37)+17+\ldots+(-5)+81+(-3)$
(i) The given arithmetic series is $7+10 \frac{1}{2}+14+\ldots+84$.
Here, $a=7, d=10 \frac{1}{2}-7=\frac{21}{2}-7=\frac{21-14}{2}=\frac{7}{2}$ and $I=84$
Let the given series contain n terms. Then,
$a_{n}=84$
$\Rightarrow 7+(n-1) \times \frac{7}{2}=84 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow \frac{7}{2} n+\frac{7}{2}=84$
$\Rightarrow \frac{7}{2} n=84-\frac{7}{2}=\frac{161}{2}$
$\Rightarrow n=\frac{161}{7}=23$
$\therefore$ Required sum $=\frac{23}{2} \times(7+84) \quad\left[S_{n}=\frac{n}{2}(a+l)\right]$
$=\frac{23}{2} \times 91$
$=\frac{2093}{2}$
$=1046 \frac{1}{2}$
(ii) The given arithmetic series is 34 + 32 + 30 + ... + 10.
Here, a = 34, d = 32 − 34 = −2 and l = 10.
Let the given series contain n terms. Then,
$a_{n}=10$
$\Rightarrow 34+(n-1) \times(-2)=10 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow-2 n+36=10$
$\Rightarrow-2 n=10-36=-26$
$\Rightarrow n=13$
$\therefore$ Required sum $=\frac{13}{2} \times(34+10) \quad\left[S_{n}=\frac{n}{2}(a+l)\right]$
$=\frac{13}{2} \times 44$
$=286$
(iii) The given arithmetic series is (−5) + (−8) + (−11) + ... + (−230).
Here, a = −5, d = −8 − (−5) = −8 + 5 = −3 and l = −230.
Let the given series contain n terms. Then,
$a_{n}=-230$
$\Rightarrow-5+(n-1) \times(-3)=-230 \quad\left[a_{n}=a+(n-1) d\right]$
$\Rightarrow-3 n-2=-230$
$\Rightarrow-3 n=-230+2=-228$
$\Rightarrow n=76$
$\therefore$ Required sum $=\frac{76}{2} \times[(-5)+(-230)] \quad\left[S_{n}=\frac{n}{2}(a+l)\right]$
$=\frac{76}{2} \times(-235)$
$=-8930$
(iv)
Given series is :
$5+(-41)+9+(-39)+13+(-37)+17+\ldots+(-5)+81+(-3)$
We have two series
1st: $5+9+13+17+\ldots+81$
2nd: $(-41)+(-39)+(-37)+\ldots+(-3)$
Let us consider 1 st series first:
$a=5$
$d=9-5=4$
$n$th term $=81$
$a_{n}=a+(n-1) d$
$81=5+(n-1) 4$
$n=20$
Using formula of sum
$S_{n}=\frac{n}{2}\left(a+a_{n}\right)$
$S_{n}=\frac{20}{2}(5+81)$
$S_{n}=860$
Now, consider 2 nd series:
$(-41)+(-39)+(-37)+\ldots+(-3)$
$a=-41$
$d=-39+41=2$
$n$th term $=-3$
$a+(n-1) d=-3$
$-41+(n-1) 2=-3$
$\Rightarrow n=20$
Using formula of sum
$s_{n}=\frac{n}{2}\left(a+a_{n}\right)$
$s_{n}=\frac{20}{2}(-41+(-3))$
$s_{n}=\frac{20}{2}(-44)$
$s_{n}=-440$
Sum of total series $=$ sum of 1 st $+$ sum of 2 nd series
Sum of given arithmetic series $=860-440=420$