Find the sum of each of the following APs:
(i) $2,7,12,17, \ldots$ to 19 terms
(ii) $9,7,5,3, \ldots$ to 14 terms
(iii) $-37,-33,-29, \ldots$ to 12 terms
(iv) $\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, \ldots$ to 11 terms
(v) $0.6,1.7,2.8, \ldots$ to 100 terms
(i) The given AP is 2, 7, 12, 17, ... .
Here, a = 2 and d = 7 − 2 = 5
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we have
$S_{19}=\frac{19}{2}[2 \times 2+(19-1) \times 5]$
$=\frac{19}{2} \times(4+90)$
$=\frac{19}{2} \times 94$
$=893$
(ii) The given AP is 9, 7, 5, 3, ... .
Here, a = 9 and d = 7 − 9 = −2
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we have
$S_{14}=\frac{14}{2}[2 \times 9+(14-1) \times(-2)]$
$=7 \times(18-26)$
$=7 \times(-8)$
$=-56$
(iii) The given AP is −37, −33, −29, ... .
Here, a = −37 and d = −33 − (−37) = −33 + 37 = 4
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we have
$S_{12}=\frac{12}{2}[2 \times(-37)+(12-1) \times 4]$
$=6 \times(-74+44)$
$=6 \times(-30)$
$=-180$
(iv) The given AP is $\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, \ldots$.
Here, $a=\frac{1}{15}$ and $d=\frac{1}{12}-\frac{1}{15}=\frac{5-4}{60}=\frac{1}{60}$
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we have
$S_{11}=\frac{11}{2}\left[2 \times\left(\frac{1}{15}\right)+(11-1) \times \frac{1}{60}\right]$
$=\frac{11}{2} \times\left(\frac{2}{15}+\frac{10}{60}\right)$
$=\frac{11}{2} \times\left(\frac{18}{60}\right)$
$=\frac{33}{20}$
(v) The given AP is 0.6, 1.7, 2.8, ... .
Here, a = 0.6 and d = 1.7 − 0.6 = 1.1
Using the formula, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$, we have
$S_{100}=\frac{100}{2}[2 \times 0.6+(100-1) \times 1.1]$
$=50 \times(1.2+108.9)$
$=50 \times 110.1$
$=5505$