Question:
Find the sum of all numbers between 200 and 400 which are divisible by 7.
Solution:
The numbers lying between 200 and 400, which are divisible by 7, are
203, 210, 217, … 399
∴First term, a = 203
Last term, l = 399
Common difference, d = 7
Let the number of terms of the A.P. be n.
$\therefore a_{n}=399=a+(n-1) d$
$\Rightarrow 399=203+(n-1) 7$
$\Rightarrow 7(n-1)=196$
$\Rightarrow n-1=28$
$\Rightarrow n=29$
$\therefore \mathrm{S}_{29}=\frac{29}{2}(203+399)$
$=\frac{29}{2}(602)$
$=(29)(301)$
$=8729$
Thus, the required sum is 8729.