Question:
Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
Solution:
The natural numbers lying between 100 and 1000, which are multiples of 5, are 105, 110, … 995.
Here, $a=105$ and $d=5$
$a+(n-1) d=995$
$\Rightarrow 105+(n-1) 5=995$
$\Rightarrow(n-1) 5=995-105=890$
$\Rightarrow 105+(n-1) 5=995$
$\Rightarrow n-1=178$
$\Rightarrow n=179$
$\therefore S_{n}=\frac{179}{2}[2(105)+(179-1)(5)]$
$=\frac{179}{2}[2(105)+(178)(5)]$
$=179[105+(89) 5]$
$=(179)(550)$
$=(179)(105+445)$
$=98450$
Thus, the sum of all natural numbers lying between 100 and 1000 , which are multiples of 5 , is 98450 .