Question:
Find the sum of all integers between 100 and 550, which are divisible by 9.
Solution:
The integers between 100 and 550 that are divisible by 9 are:
108, 117...549
Here, we have:
$a=108$
$d=9$
$a_{n}=549$
$\Rightarrow 108+(n-1)(9)=549$
$\Rightarrow 9 n-9=441$
$\Rightarrow 9 n=450$
$\Rightarrow n=50$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow S_{50}=\frac{50}{2}[2 \times 108+(50-1) \times 9]$
$\Rightarrow S_{50}=25(657)=16425$