Question:
Find the sum (41 + 42 + 43 + …. + 100).
Solution:
It is required to find the sum (41 + 42 + 43 + …. + 100).
$(41+42+43+\ldots .+100)=$ Sum of integers starting from 1 to $100-$ Sum of integers starting from 1 to 40 .
Note:
Sum of first n natural numbers, 1 + 2 +3+…n,
$\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$
From the above identities,
So, Sum of integers starting from 1 to 100 $=\frac{n(n+1)}{2}$
$=\frac{100(101)}{2}$
$=5050$
So, Sum of integers starting from 1 to 40 $=\frac{n(n+1)}{2}$
$=\frac{40(41)}{2}$
$=820$
$(41+42+43+\ldots+100)=$ Sum of integers starting from 1 to $100-$ Sum of integers starting from 1 to 40 .
$(41+42+43+\ldots+100)=5050-820=4230$