Find the squares of the following numbers using the identity (a − b)2 = a2 − 2ab + b2:
(i) 395
(ii) 995
(iii) 495
(iv) 498
(v) 99
(vi) 999
(vii) 599
(i) Decomposing: 395 = 400 − 5
Here, a = 400 and b = 5
Using the identity (a − b)2 = a2 − 2ab + b2:
3952 = (400 − 5)2 = 4002 − 2(400)(5) + 52 = 160000 − 4000 + 25 = 156025
(ii) Decomposing: 995 = 1000 − 5
Here, a = 1000 and b = 5
Using the identity (a − b)2 = a2 − 2ab + b2:
9952 = (1000 − 5)2 = 10002 − 2(1000)(5) + 52 = 1000000 − 10000 + 25 = 990025
(iii) Decomposing: 495 = 500 − 5
Here, a = 500 and b = 5
Using the identity (a − b)2 = a2 − 2ab + b2:
4952 = (500 − 5)2 = 5002 − 2(500)(5) + 52 = 250000 − 5000 + 25 = 245025
(iv) Decomposing: 498 = 500 − 2
Here, a = 500 and b = 2
Using the identity (a − b)2 = a2 − 2ab + b2:
4982 = (500 − 2)2 = 5002 − 2(500)(2) + 22 = 250000 − 2000 + 4 = 248004
(v) Decomposing: 99 = 100 − 1
Here, a = 100 and b = 1
Using the identity (a − b)2 = a2 − 2ab + b2:
992 = (100 − 1)2 = 1002 − 2(100)(1) + 12 = 10000 − 200 + 1 = 9801
(vi) Decomposing: 999 = 1000 - 1
Here, a = 1000 and b = 1
Using the identity (a − b)2 = a2 − 2ab + b2:
9992 = (1000 − 1)2 = 10002 − 2(1000)(1) + 12 = 1000000 − 2000 + 1 = 998001
(vii) Decomposing: 599 = 600 − 1
Here, a = 600 and b = 1
Using the identity (a − b)2 = a2 − 2ab + b2:
5992 = (600 − 1)2 = 6002 − 2(600)(1) + 12 = 360000 − 1200 + 1 = 358801