Find the solution of the pair of equations $\frac{x}{10}+\frac{y}{5}-1=0$
$\frac{x}{8}+\frac{y}{6}=15$ and find $\mathrm{A}$, if $\mathrm{y}=\lambda \mathrm{x}+5$
Given pair of equations is
$\frac{x}{10}+\frac{y}{5}-1=0$ $\ldots($ i)
and $\frac{x}{8}+\frac{y}{6}=15$ .....(ii)
Now, multiplying both sides of Eq. (i) by LCM $(10,5)=10$, we get
$x+2 y-10=0$
$\Rightarrow$ $x+2 y=10$ ....(iii)
Again, multiplying both sides of Eq. (iv) by LCM $(8,6)=24$, we get
$3 x+4 y=360$ ...(iv)
On, multiplying Eq. (iii) by 2 and then subtracting from Eq. (iv), we get
Put the value of $x$ in Eq. (iii), we get
$340+2 y=10$
$\Rightarrow \quad 2 y=10-340=-330$
$\Rightarrow \quad y=-165$
Given that, the linear relation between $x, y$ and $\lambda$ is
$y=\lambda x+5$
Now, put the values of $x$ and $y$ in above relation, we get
$-165=\lambda(340)+5$
$\Rightarrow \quad 340 \lambda=-170$
$\Rightarrow \quad \lambda=-\frac{1}{2}$
Hence, the solution of the pair of equations is $x=340, y=-165$ and the required value of $\lambda$ is $-\frac{1}{2}$