Find the slope of a line whose inclination is

Question:

Find the slope of a line whose inclination is

(i) $30^{\circ}$

(ii) $120^{\circ}$

(iii) $135^{\circ}$

(iv) $90^{\circ}$

 

Solution:

We know that the slope of a given line is given by

Slope = tanθ Where θ = angle of inclination

(i) Given that $\theta=30^{\circ}$

Slope $=\tan \left(30^{\circ}\right)=\frac{1}{\sqrt{3}}$

(ii) Given that $\theta=120^{\circ}$

Slope $=\tan \left(120^{\circ}\right)=\tan \left(90^{\circ}+30^{\circ}\right)=-\cot \left(30^{\circ}\right)=-\sqrt{3}$

(iii) Given that $\theta=135^{\circ}$

Slope $=\tan \left(135^{\circ}\right)=\tan \left(90^{\circ}+45^{\circ}\right)=-\cot \left(45^{\circ}\right)-1$

(iv) Given that $\theta=90^{\circ}$

Slope $=\tan \left(90^{\circ}\right)=\infty$

 

Leave a comment