Question:
Find the side of a cube whose volume is $\frac{24389}{216} \mathrm{~m}^{3}$.
Solution:
Volume of a cube with side s is given by:
$V=s^{3}$
$\therefore s=\sqrt[3]{\bar{V}}$
$=\sqrt[3]{\frac{24389}{216}}$
$=\frac{\sqrt[3]{24389}}{\sqrt[3]{216}}$
$=\frac{\sqrt[3]{29 \times 29 \times 29}}{\sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3}}$ (By prime factorisation)
$=\frac{29}{2 \times 3}$
$=\frac{29}{6}$
Thus, the length of the side is $\frac{29}{6} \mathrm{~m}$.