Question:
Find the set of values for which the function $f(x)=x+3$ and $g(x)=3 x^{2}-1$ are equal.
Solution:
$f(x)=x+3, g(x)=3 x^{2}-1$
To find:- Set of values of $x$ for which $f(x)=g(x)$
Consider,
$f(x)=g(x)$
$f(x)=g(x)$
$x+3=3^{x^{2}}-1$
$3^{x^{2}}-x-4=0$
$3^{x^{2}}-4 x+3 x-4=0$
$x(3 x-4)+(3 x-4)=0$
$(3 x-4)(x+1)=0$
$x=4 / 3$ or $x=-1$
The set values for which $f(x)$ and $g(x)$ have same value is $\{4 / 3,-1\}$.