Question:
Find the set of values for which the function $f(x)=1-3 x$ and $g(x)=2 x^{2}-1$ are equal.
Solution:
$f(x)=1-3 x, g(x)=2 x^{2}-1$
To find:- Set of values of $x$ for which $f(x)=g(x)$
Consider,
$f(x)=g(x)$
$1-3 x=2^{x^{2}}-1$
$2^{x^{2}}+3 x-2=0$
$2^{x^{2}}+4 x-x-2=0$
$2 x(x+2)-(x+2)=0$
$(x+2)(2 x-1)=0$
$x=-2$ or $x=$ \gg
The set values for which $f(x)$ and $g(x)$ have same value is $\{-2$, \diamond $\}$.