Question:
Find the second term and nth term of an A.P. whose 6th term is 12 and the 8th term is 22.
Solution:
Given;
$a_{6}=12$
$\Rightarrow a+(6-1) d=12$
$\Rightarrow a+5 d=12$ ...(i)
$a_{8}=22$
$\Rightarrow a+(8-1) d=22$
$\Rightarrow a+7 d=22$ ...(ii)
Solving (i) and (ii), we get:
$2 d=10$
$\Rightarrow d=5$
Putting the value of $d$ in (i), we get:
$a+5 \times 5=12$
$\Rightarrow a=12-25=-13$
$\therefore a_{2}=a+(2-1) d=a+d=-13+5=-8$
Also, $a_{n}=a+(n-1) d$
$=-13+(n-1) 5$
$=-13+5 n-5$
$=5 n-18$