Question:
Find the second order derivatives of the function.
$x^{2}+3 x+2$
Solution:
Let $y=x^{2}+3 x+2$
Then,
$\frac{d y}{d x}=\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(3 x)+\frac{d}{d x}(2)=2 x+3+0=2 x+3$
$\therefore \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}(2 x+3)=\frac{d}{d x}(2 x)+\frac{d}{d x}(3)=2+0=2$