Question:
Find the rth term of an A.P., the sum of whose first n terms is 3n2 + 2n. [NCERT EXEMPLAR]
Solution:
Let $a$ and $d$ be the first term and the common difference of the given A.P., respectively As, $S_{n}=3 n^{2}+2 n$
So, $a=S_{1}=3 \times 1^{2}+2 \times 1=3+2=5$ and
$S_{2}=3 \times 2^{2}+2 \times 2=12+4=16$
$\Rightarrow a+a_{2}=16$
$\Rightarrow a+a+d=16$
$\Rightarrow 2 a+d=16$
$\Rightarrow 2 \times 5+d=16$
$\Rightarrow d=16-10$
$\Rightarrow d=6$
Now,
$a_{r}=a+(r-1) d$
$=5+(r-1) \times 6$
$=5+6 r-6$
$\therefore a_{r}=6 r-1$