Question.
Find the roots of the quadratic equations given in Q.1 above by applying the quadratic formula.
Find the roots of the quadratic equations given in Q.1 above by applying the quadratic formula.
Solution:
(i) $2 x^{2}-7 x+3=0$
$a=2, b=-7, c=3$
Discriminant $D=(-7)^{2}-4(2)(3)=25$
$\Rightarrow \sqrt{10}=\sqrt{25}=5$
Roots of the given quadratic equation are
$\frac{-\mathbf{b} \pm \sqrt{\mathbf{D}}}{\mathbf{2 a}}$
i.e., $\frac{\mathbf{7} \pm \mathbf{5}}{\mathbf{2} \times \mathbf{2}}$, i.e., the roots are 3 and $\frac{\mathbf{1}}{\mathbf{2}}$.
(ii) $2 x^{2}+x-4=0$
$a=2, b=1, c=-4$
$D=(1)^{2}-4(2)(-4)=33 \Rightarrow \sqrt{\mathbf{D}}=\sqrt{\mathbf{3 3}}$
Roots are given by $x=\frac{-\mathbf{b} \pm \sqrt{\mathbf{1}}}{2 \mathbf{a}}=\frac{-\mathbf{1} \pm \sqrt{\mathbf{3 3}}}{4}$
Hence, the two roots of the quadratic equation are $\frac{-\mathbf{1} \pm \sqrt{\mathbf{3 3}}}{\mathbf{4}}$
(iii) $4 x^{2}+4 \sqrt{3} x+3=0$
On comparing this equation with $a x^{2}+b x+c=0$, we obtain $a=4, b=4 \sqrt{\mathbf{3}}, c=3$ By using quadratic formula, we obtain
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\Rightarrow x=\frac{-4 \sqrt{3} \pm \sqrt{48-48}}{8}$
$\Rightarrow x=\frac{-4 \sqrt{3} \pm 0}{8}$
$\therefore \quad x=\frac{-\sqrt{3}}{2}$ or $\frac{-\sqrt{3}}{2}$
(iv) $\quad 2 x^{2}+x+4=0$
On comparing this equation with
$a x^{2}+b x+c=0$
we obtain $\mathrm{a}=2, \mathrm{~b}=1, \mathrm{c}=4$
By using quadratic formula, we obtain
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \Rightarrow x=\frac{-1 \pm \sqrt{1-32}}{4}$
$\Rightarrow x=\frac{-1 \pm \sqrt{-31}}{4}$
However, the square of a number cannot be negative. Therefore, there is no real root for the given equation.
(i) $2 x^{2}-7 x+3=0$
$a=2, b=-7, c=3$
Discriminant $D=(-7)^{2}-4(2)(3)=25$
$\Rightarrow \sqrt{10}=\sqrt{25}=5$
Roots of the given quadratic equation are
$\frac{-\mathbf{b} \pm \sqrt{\mathbf{D}}}{\mathbf{2 a}}$
i.e., $\frac{\mathbf{7} \pm \mathbf{5}}{\mathbf{2} \times \mathbf{2}}$, i.e., the roots are 3 and $\frac{\mathbf{1}}{\mathbf{2}}$.
(ii) $2 x^{2}+x-4=0$
$a=2, b=1, c=-4$
$D=(1)^{2}-4(2)(-4)=33 \Rightarrow \sqrt{\mathbf{D}}=\sqrt{\mathbf{3 3}}$
Roots are given by $x=\frac{-\mathbf{b} \pm \sqrt{\mathbf{1}}}{2 \mathbf{a}}=\frac{-\mathbf{1} \pm \sqrt{\mathbf{3 3}}}{4}$
Hence, the two roots of the quadratic equation are $\frac{-\mathbf{1} \pm \sqrt{\mathbf{3 3}}}{\mathbf{4}}$
(iii) $4 x^{2}+4 \sqrt{3} x+3=0$
On comparing this equation with $a x^{2}+b x+c=0$, we obtain $a=4, b=4 \sqrt{\mathbf{3}}, c=3$ By using quadratic formula, we obtain
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\Rightarrow x=\frac{-4 \sqrt{3} \pm \sqrt{48-48}}{8}$
$\Rightarrow x=\frac{-4 \sqrt{3} \pm 0}{8}$
$\therefore \quad x=\frac{-\sqrt{3}}{2}$ or $\frac{-\sqrt{3}}{2}$
(iv) $\quad 2 x^{2}+x+4=0$
On comparing this equation with
$a x^{2}+b x+c=0$
we obtain $\mathrm{a}=2, \mathrm{~b}=1, \mathrm{c}=4$
By using quadratic formula, we obtain
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \Rightarrow x=\frac{-1 \pm \sqrt{1-32}}{4}$
$\Rightarrow x=\frac{-1 \pm \sqrt{-31}}{4}$
However, the square of a number cannot be negative. Therefore, there is no real root for the given equation.