Question.
Find the roots of the following equations :
(i) $x-\frac{\mathbf{1}}{\mathbf{x}}=3, x \neq 0$
(ii) $\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}, x \neq-4,7$
Find the roots of the following equations :
(i) $x-\frac{\mathbf{1}}{\mathbf{x}}=3, x \neq 0$
(ii) $\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}, x \neq-4,7$
Solution:
(i) $x-\frac{1}{x}=3 \quad \Rightarrow x^{2}-3 x-1=0$
On comparing this equation with
$a x^{2}+b x+c=0$
we obtain $\mathrm{a}=1, \mathrm{~b}=-3, \mathrm{c}=-1$
By using quadratic formula, we obtain
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \Rightarrow x=\frac{3 \pm \sqrt{9+4}}{2}$
$\Rightarrow x=\frac{3 \pm \sqrt{13}}{2}$
Therefore, $x=\frac{3+\sqrt{13}}{2}$ or $\frac{3-\sqrt{13}}{2}$
(ii) $\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30} ; x \neq-4$ and $x \neq 7$
$\Rightarrow \frac{(x-7)-(x+4)}{(x+4)(x-7)}=\frac{11}{30} \Rightarrow \frac{-11}{\left(x^{2}-3 x-28\right)}=\frac{11}{30}$
$\Rightarrow-\left(x^{2}-3 x-28\right)=30$
$\Rightarrow x^{2}-3 x-28+30=0$
$\Rightarrow x^{2}-3 x+2=0$
$a=1, b=-3, c=2$
$D=(-3)^{2}-4(1)(2)=1 \Rightarrow \sqrt{\mathbf{D}}=\mathbf{1}$
The two roots are given by $\frac{-\mathbf{b} \pm \sqrt{\mathbf{D}}}{\mathbf{2 a}}$, ie, $\frac{\mathbf{3} \pm \mathbf{1}}{\mathbf{2}}$.
Hence, the two roots are 1 and 2 .
(i) $x-\frac{1}{x}=3 \quad \Rightarrow x^{2}-3 x-1=0$
On comparing this equation with
$a x^{2}+b x+c=0$
we obtain $\mathrm{a}=1, \mathrm{~b}=-3, \mathrm{c}=-1$
By using quadratic formula, we obtain
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \Rightarrow x=\frac{3 \pm \sqrt{9+4}}{2}$
$\Rightarrow x=\frac{3 \pm \sqrt{13}}{2}$
Therefore, $x=\frac{3+\sqrt{13}}{2}$ or $\frac{3-\sqrt{13}}{2}$
(ii) $\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30} ; x \neq-4$ and $x \neq 7$
$\Rightarrow \frac{(x-7)-(x+4)}{(x+4)(x-7)}=\frac{11}{30} \Rightarrow \frac{-11}{\left(x^{2}-3 x-28\right)}=\frac{11}{30}$
$\Rightarrow-\left(x^{2}-3 x-28\right)=30$
$\Rightarrow x^{2}-3 x-28+30=0$
$\Rightarrow x^{2}-3 x+2=0$
$a=1, b=-3, c=2$
$D=(-3)^{2}-4(1)(2)=1 \Rightarrow \sqrt{\mathbf{D}}=\mathbf{1}$
The two roots are given by $\frac{-\mathbf{b} \pm \sqrt{\mathbf{D}}}{\mathbf{2 a}}$, ie, $\frac{\mathbf{3} \pm \mathbf{1}}{\mathbf{2}}$.
Hence, the two roots are 1 and 2 .