Find the roots of each of the following equations, if they exist, by applying the quadratic formula:
Question:
Find the roots of each of the following equations, if they exist, by applying the quadratic formula:
$x^{2}-4 x-1=0$
Solution:
Given :
$x^{2}-4 x-1=0$
On comparing it with $a x^{2}+b x+c=0$, we get :
$a=1, b=-4$ and $c=-1$
Discriminant $D$ is given by :
$D=\left(b^{2}-4 a c\right)$
$=(-4)^{2}-4 \times 1 \times(-1)$
$=16+4$
$=20$
$=20>0$
Hence, the roots of the equation are real.
Roots $\alpha$ and $\beta$ are given by :
$\alpha=\frac{-b+\sqrt{D}}{2 a}=\frac{-(-4)+\sqrt{20}}{2 \times 1}=\frac{4+2 \sqrt{5}}{2}=\frac{2(2+\sqrt{5})}{2}=(2+\sqrt{5})$
$\beta=\frac{-b-\sqrt{D}}{2 a}=\frac{-(-4)-\sqrt{20}}{2}=\frac{4-2 \sqrt{5}}{2}=\frac{2(2-\sqrt{5})}{2}=(2-\sqrt{5})$
Thus, the roots of the equation are $(2+\sqrt{5})$ and $(2-\sqrt{5})$.