Find the roots of each of the following equations, if they exist, by applying the quadratic formula:
Question:
Find the roots of each of the following equations, if they exist, by applying the quadratic formula:
$x^{2}-(2 b-1) x+\left(b^{2}-b-20\right)=0$
Solution:
The given equation is $x^{2}-(2 b-1) x+\left(b^{2}-b-20\right)=0$.
Comparing it with $A x^{2}+B x+C=0$, we get
$A=1, B=-(2 b-1)$ and $C=b^{2}-b-20$
$\therefore$ Discriminant, $D=B^{2}-4 A C=[-(2 b-1)]^{2}-4 \times 1 \times\left(b^{2}-b-20\right)=4 b^{2}-4 b+1-4 b^{2}+4 b+80=81>0$
So, the given equation has real roots.
Now, $\sqrt{D}=\sqrt{81}=9$
$\therefore \alpha=\frac{-B+\sqrt{D}}{2 A}=\frac{-[-(2 b-1)]+9}{2 \times 1}=\frac{2 b+8}{2}=b+4$
$\beta=\frac{-B-\sqrt{D}}{2 A}=\frac{-[-(2 b-1)]-9}{2 \times 1}=\frac{2 b-10}{2}=b-5$
Hence, $(b+4)$ and $(b-5)$ are the roots of the given equation.