Find the roots of each of the following equations, if they exist, by applying the quadratic formula:
Question:
Find the roots of each of the following equations, if they exist, by applying the quadratic formula:
$2 \sqrt{3} x^{2}-5 x+\sqrt{3}=0$
Solution:
The given equation is $2 \sqrt{3} x^{2}-5 x+\sqrt{3}=0$.
Comparing it with $a x^{2}+b x+c=0$, we get
$a=2 \sqrt{3}, b=-5$ and $c=\sqrt{3}$
$\therefore$ Discriminant, $D=b^{2}-4 a c=(-5)^{2}-4 \times 2 \sqrt{3} \times \sqrt{3}=25-24=1>0$
So, the given equation has real roots.
Now, $\sqrt{D}=\sqrt{1}=1$
$\therefore \alpha=\frac{-b+\sqrt{D}}{2 a}=\frac{-(-5)+1}{2 \times 2 \sqrt{3}}=\frac{6}{4 \sqrt{3}}=\frac{\sqrt{3}}{2}$
$\beta=\frac{-b-\sqrt{D}}{2 a}=\frac{-(-5)-1}{2 \times 2 \sqrt{3}}=\frac{4}{4 \sqrt{3}}=\frac{\sqrt{3}}{3}$
Hence, $\frac{\sqrt{3}}{2}$ and $\frac{\sqrt{3}}{3}$ are the roots of the given equation.