Find the roots of each of the following equations, if they exist, by applying the quadratic formula:
Question:
Find the roots of each of the following equations, if they exist, by applying the quadratic formula:
$x^{2}-4 a x-b^{2}+4 a^{2}=0$
Solution:
The given equation is $x^{2}-4 a x-b^{2}+4 a^{2}=0$.
Comparing it with $A x^{2}+B x+C=0$, we get
$A=1, B=-4 a$ and $C=-b^{2}+4 a^{2}$
$\therefore$ Discriminant, $D=B^{2}-4 A C=(-4 a)^{2}-4 \times 1 \times\left(-b^{2}+4 a^{2}\right)=16 a^{2}+4 b^{2}-16 a^{2}=4 b^{2}>0$
So, the given equation has real roots.
Now, $\sqrt{D}=\sqrt{4 b^{2}}=2 b$
$\therefore \alpha=\frac{-B+\sqrt{D}}{2 A}=\frac{-(-4 a)+2 b}{2 \times 1}=\frac{4 a+2 b}{2}=2 a+b$
$\beta=\frac{-B-\sqrt{D}}{2 A}=\frac{-(-4 a)-2 b}{2 \times 1}=\frac{4 a-2 b}{2}=2 a-b$
Hence, $(2 a+b)$ and $(2 a-b)$ are the roots of the given equation.