Find the roots of each of the following equations, if they exist, by applying the quadratic formula:
Find the roots of each of the following equations, if they exist, by applying the quadratic formula:
$a^{2} b^{2} x^{2}-\left(4 b^{4}-3 a^{4}\right) x-12 a^{2} b^{2}=0, a \neq 0$ and $b \neq 0$
The given equation is $a^{2} b^{2} x^{2}-\left(4 b^{4}-3 a^{4}\right) x-12 a^{2} b^{2}=0$.
Comparing it with $A x^{2}+B x+C=0$, we get
$A=a^{2} b^{2}, B=-\left(4 b^{4}-3 a^{4}\right)$ and $C=-12 a^{2} b^{2}$
$\therefore$ Discriminant, $D=B^{2}-4 A C=\left[-\left(4 b^{4}-3 a^{4}\right)\right]^{2}-4 \times a^{2} b^{2} \times\left(-12 a^{2} b^{2}\right)=16 b^{8}-24 a^{4} b^{4}+9 a^{8}+48 a^{4} b^{4}=16 b^{8}+24 a^{4} b^{4}+9 a^{8}=\left(4 b^{4}+3 a^{4}\right)^{2}>0$
So, the given equation has real roots.
Now, $\sqrt{D}=\sqrt{\left(4 b^{4}+3 a^{4}\right)^{2}}=4 b^{4}+3 a^{4}$
$\therefore \alpha=\frac{-B+\sqrt{D}}{2 A}=\frac{-\left[-\left(4 b^{4}-3 a^{4}\right)\right]+\left(4 b^{4}+3 a^{4}\right)}{2 \times a^{2} b^{2}}=\frac{8 b^{4}}{2 a^{2} b^{2}}=\frac{4 b^{2}}{a^{2}}$
$\beta=\frac{-B-\sqrt{D}}{2 A}==\frac{-\left[-\left(4 b^{4}-3 a^{4}\right)\right]-\left(4 b^{4}+3 a^{4}\right)}{2 \times a^{2} b^{2}}=\frac{-6 a^{4}}{2 a^{2} b^{2}}=-\frac{3 a^{2}}{b^{2}}$
Hence, $\frac{4 b^{2}}{a^{2}}$ and $-\frac{3 a^{2}}{b^{2}}$ are the roots of the given equation.