Find the relationship between a and b so that the function f defined by
$f(x)= \begin{cases}a x+1, & \text { if } x \leq 3 \\ b x+3, & \text { if } x>3\end{cases}$
is continuous at x = 3.
The given function $f$ is $f(x)=\left\{\begin{array}{l}a x+1, \text { if } x \leq 3 \\ b x+3, \text { if } x>3\end{array}\right.$
If f is continuous at x = 3, then
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=f(3)$ .....(1)
Also,
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(a x+1)=3 a+1$
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(b x+3)=3 b+3$
$f(3)=3 a+1$
Therefore, from (1), we obtain
$3 a+1=3 b+3=3 a+1$
$\Rightarrow 3 a+1=3 b+3$
$\Rightarrow 3 a=3 b+2$
$\Rightarrow a=b+\frac{2}{3}$
Therefore, the required relationship is given by,$a=b+\frac{2}{3}$